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SECTION 1

INTRODUCTION

One of the most difficult fluid dynamic analysis problems, in the

design of chemical lasers, is the computation of the mixing between

the primary flow and various injected secondary flows. The exact

calculation of the mixing process requires the solution of the

three-dimensional (3-D) Navier-Stokes equations for a chemically

reacting, viscous, compressible flow over a very fine mesh. Due to

the tight mesh requirements and the need to solve large numbers of

species equations, exact solutions require hundreds of hours of

computer time per case, even on CRAY class machines. As a

consequence, chemical laser mixing analyses have been done almost

exclusively using the two-dimensional (either axisymmetric or

planar 2-D) parabolic, thin shear layer approximation (Ref. 1).

When the secondary flow is injected parallel to the primary flow,

the 2-D approach is valid. However, in most instances, the

sidewall injection concept is used wherein the secondary flow is

injected into the primary at some large angle. In this instance,

the bending of the injected jet in the direction of the primary

flow induces a large axial vorticity (i.e., flow swirl) component

into the jet. Since the 2-D equations have zero axial vorticity by

definition, there is every reason to believe that the 2-D approach

will underpredict the rate at which the two flows will mix.

The rate at which mixing takes place is dependent upon the

magnitude of the convective velocities transverse to the flow

direction and the magnitude of the diffusional velocities. With

the 2-D shear layer equations, the transverse convective velocity

is small and the choice of a model for the diffusional velocities

(i.e., binary diffusion versus multicomponent diffusion) has a

significant influence on the computed results (Ref. 1). However,

for the 3-D equations with large axial vorticity, the magnitude of

the transverse convective velocities can be of the same order as

the velocity in the flow direction. In this situation, the

influence of the model for the diffusional velocities may be much



less dominant than for the 2-D case. Since the choice of model for

the diffusional velocities has a first-order impact on the

computational expense, some assessment of its impact on the rate of

mixing in flows with large axial vorticity is required.

This report discusses the development of a 3-D mixing code (TRIMIX)

to predict the influence of axial vorticity and diffusional

velocity model on the rate of mixing between the primary flow and

an injected secondary flow. The parabolic flow approximation will

be used to minimize computation time and the initial Aistribution

of axial vorticity will be specified. Therefore, the calculation

will not be exact since the initic.. vorticity distribution will not

be known exactly; However, the experimental data base on sidewall

injection is sufficient to make a reasonable estimate of the

initial vorticity. The resulting code is expected to run between

one and two orders of magnitude faster than a Navier-Stokes

calculation (3 to 5 h of CRAY time for a chemically reacting flow).
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SECTION 2

ANALYSIS

A typical chemical laser nozzle is shown in Figure 2.1 with

sidewall injection from both walls in the subsonic flow region.

Also shown is a commonly used injection pattern with two rows of

staggered holes. The number of rows, hole sizes and spacing are

chosen to provide a uniform distribution of the secondary flow

throughout the primary flow. A rectangular coordinate system will

be used with x in the primary flow direction, y perpendicular to

the nozzle axis and z in the direction along which the injection

holes are spaced. The corresponding velocity components are u in

the x direction, v in the y direction and w in the z direction.

The number of holes in the z direction generally ranges from 20 to

50. Since it takes at least 20 mesh points in the z direction to

resolve the flow field from one hole to the next, and about 40 in

the y direction from y = o to y = H, it is obvious that carrying

out the computation over the entire array of holes would be

prohibitively expensive. Fortunately, in most instances the hole

pattern in the z direction is symmetric such that the computations

can be carried out for a unit cell of width A (see Fig. 2.1).

Therefore, the computational domain in the z direction is from z =

o to z = A(x). Since the walls which bound the flow in the z

direction are generally not parallel to one another, A must vary in

the x direction to conserve the cross-sectional flow area. The

injection pattern from the top wall (y = H) is usually staggered

from the hole pattern at y = -H such that the flow is not symmetric
about y = o. However, to conserve computation time, in this report

y = o will be assumed to be a symmetry plane and the computational

domain in the y direction is from y = o to y = H(x).

2.1 EQUATIONS.

To satisfy the continuity equation, two stream functions are

defined as follows:

3
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y-- ay (Pu) (2.1)
aa ax

The remaining velocity component v is defined by:

ay
pv = 7 + qI (2.2)

The axial vorticity (i.e., the x vorticity component) is defined

by:

aw av) -y -v (2.3)

where the vorticity is defined to be positive for clockwise

rotation.

Substitution of the v and w expressions of Equations 2.1 and 2.2

into Equation 2.3 provides the equation for the stream function Y.

ay2 z 2
ay~ a 2 P y) 8y p az Oz

(2.4)

= - P &J + 1z - O z
(P az) 'Oz

The momentum equation in the x direction is used to solve for the

u velocity component and is given by:

pV.Vu = V. (pVu) - ( (2.5)

jp _dp
dx

This equation is parabolized by dropping the x derivative in the

divergence of pVu and by replacing the pressure gradient term by

the derivative of the mean pressure. That is, the pressure

gradient (9) is some average value over the flow cross section and

is chosen to satisfy global continuity in the form of Equation 2.6.

5



HA

= pudzdy = constant 
(2.6)

0 0

Equations 2.5 and 2.6 are two coupled equations which are solved

for u and P. After solving for u, the stream function qi of

Equation 2.1 is evaluated by integration:

y
= - J -(pu)dy (2.7)

The transport equation for axial vorticity for a compressible,

variable viscosity fluid is derived in Appendix A and is given as

(Equation A.6):

pVVW= V-(VW) - W ay (2.8)

where the subscript x has been dropped from wx and Equation 2.1 has

been used to introduce the stream function qP. The quantity 0 is

defined in Equation A.6 of Appendix A and contains the terms

involving the gradients in density and viscosity.

The species equations are given by:

pV.VK i = - V.(pK iVi) + wi  (2.9)

where K1 is the species mass fraction, Wi is the net rate of

production of species i due to chemical reactions and Vi is the

species diffusional velocity vector and is defined by:

V. = Q. e + C. • (2.10)1 3. y 3. Z

where axial diffusion is ignored due to the parabolic flow

approximation.
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As indicated earlier, one of the objectives of this effort is to

assess the influence of the diffusional velocity model on the

computed results. In Reference 2, it was demonstrated that the

"effective" binary diffusion model gave results which were in

excellent agreement with the exact multicomponent diffusion model.

Since the "effective" binary diffusion model requires much less

computational effort than solving the Stefan-Maxwell equations for

the multicomponent model, the effective binary diffusion model is

used to define the diffusional velocities. The diffusional

velocities are given as:

N

KiM i  = - DVy (KiM) + Ki E DjVy(KjM) + SV yP/P

J=l

N

KiM~i = _ DiV z(KiM) + Ki E DV z(KjM) + SV zP/P

J=1

N

S i  - DiKi(l - Mi/M) + Ki E DjKj(I - Mj/M) (2.11)

J=1

where Vy denotes the gradient operator in the y direction and Vz in

the z direction. M is the mixture molecular weight. Reference 3

may be consulted for the derivation of Equation 2.11. The

diffusion coefficient is given by:

Di = (1 - xi)/[P Z (xj/pD ji)1 (2.12)

where xi is the mole fraction of species i and the Dii are the

binary diffusion coefficients. Note that the summation of Equation

2.12 excludes j = i.

For comparative purposes, the code also contains the binary

diffusion model with the diffusional velocities given by:

7



Ki = - DV y(Ki) Kiw. = _ DV z(Ki)

D Sp /pSc (2.13)

where Sc is the Schmidt number.

The energy equation is solved for temperature and is given by:

pC V.VT = V (KVT) + V.Vp + PVu.Vu +p

N N

- KiCpi (Vi VT) - iw i  (2.14)
i=l i=l

Again, this expression is parabolized by ignoring axial heat

conduction and by ignoring the x derivative in the viscous

dissipation term.

The pressure gradients required to calculate the pressure diffusion

of Equation 2.11 and the flow work of Equation 2.14 are obtained

from the primitive variable form of the y and z momentum equation

and are given by:

ap V. (pVv) - p(V.V)vay

ap - V .(IVw) - p(V.V)w (2.15)
Oz

2.2 BOUNDARY CONDITIONS.

As indicated in Section 2, the planes y = o, z = o and z = A are

symmetry planes. Therefore, at y = o, the y gradients in axial

velocity, temperature and species vanish. At z = o and z = A, the

z gradients in axial velocity, temperature and species vanish. At

y = H, there may be either a wall or a plane of symmetry. If a

symmetry plane is present at y = H, then the y gradients in

velocity, temperature and species are zero. For a wall at y = H,

8



the no-slip condition (u = o) is used for velocity and the wall

temperature is specified.

Heterogeneous wall reactions are accounted for in the species

boundary conditions at y = H when a wall is present. The boundary

condition is:

y = H: (for wall)

- PwCosO Kiv(I =i

TanO = dH (2.16)dx

The net rate of species production per unit time and surface area

is denoted by Ji and is given as:

J = Pw(RT/2nMiJX / 2 [0IKi+ @2] (2.17)

where the specific expressions for 01 and 02 depend on the

particular wall reactions involving the ith species. For atom wall

recombination reactions, the surface reaction is:

Y
A + , + wall 0- A2 + wall (2.18)

For reaction Equation 2.18, the coefficients are:

i = A: 1=- Y 2 = YKA 2 (KA/KA2je q

i = A: i= - yV2 I/KA2)eq 02 = YV KA  (2.19)

where y is the recombination coefficient. Note that usually the

wall temperature is low enough such that the equilibrium ratio is

9



vanishing small, in which case 02(i = A) and 01(i = A2) may be

zeroed with negligible error.

For surface deactivation of an excited species A*, the reaction is

represented by:

y
A* + wall - A + wall

i = A*: 0I = Y  02 = 0.0

i = A: 0i = 0.0 02 = yK(A*) (2.20)

The boundary conditions for the axial vorticity and stream

functions are obtained from their definitions and a knowledge of

the behavior of the v and w velocity components on the boundaries.

The v and w velocity components on the boundaries are given by:

awy =o: v=o 8y 0

dH 8w
y = H: v = u dx w = o (wall) Ly = o (symmetry plane)

dxva

z=o: = w =o

z A. =o w= u d (2.21)
8z d

At the symmetry planes y = o and z = o, the axial vorticity is

zero. At z = A, differentiating the boundary condition on w with

respect to y gives:

dA 8u
z= A: ' = dx ay (2.22)

At y = H, the axial vorticity is zero if a symmetry plane is

present. If a wall is present at y = H, then v = w = o and the

vorticity is:

10



y = H: 1 a (2.23)
pay 2

The boundary condition on (P at y = o must be consistent with the

requirement that v = o at the symmetry plane. Therefore, qi = o at
y = o. This condition is incorporated into the expression of

Equation 2.7. The derivatives of Y with respect to y and z are
evaluated on the boundaries using Equations 2.1, 2.2 and 2.21. By

integrating these derivatives, the Y values on the boundaries can

be determined to within an arbitrary constant. Since only the

derivatives of Y are required to define v and w, the value assigned
to the constant is irrelevant. Therefore, we set Y = o at y = o,

z = o to obtain the following:

y =o: P= o

z z

y =H: ' - H pudz - dZ

0 0

z= o: Y =o

zA: Y 1y pudy (2.24)

0

2.3 INITIAL CONDITIONS.

Figure 2.2 shows the injected jets corresponding to the hole

injection patterns of Figure 2.1. In the immediate region of the

injection process (between stations 0 and D) the problem is

elliptic and requires a Navier-Stokes solution to define the flow

field. The approach in the TRIMIX code is to start the calculation

at some small distance downstream (station D) of the jet injection

location where the primary flow has bent the jets approximately

parallel to the flow. Since the jets are still essentially unmixed

at station D, this seems to be a reasonable way to carry out the 3-

D mixing calculation while avoiding the complexity of the exact

11
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I, -----

Figure 2.2. Schematic of injection geometry.
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Navier-Stokes calculation. The difficulty with this approach is

that it requires the specification of the initial conditions at

station D. In Appendix B, the initial conditions for the

thermodynamic state variables, the axial velocity (u) and the area

occupied by each jet are obtained by satisfying the global

conservation equations with some closure assumptions. To obtain

the initial axial vorticity and transverse velocity components (v

and w), proceed as follows.

Following Fearn and Weston (Ref. 4), we adopt the diffuse vortex

model where the distribution of vorticity is assumed to be Gaussian

within each vortex. It is also assumed that the jets are spaced

far enough apart such that the vorticity field of each jet is

independent from that of its neighbors. Thus, the vorticity

distribution is taken to be a linear combination of the vorticity

field of each jet. This gives:

n -8i2

w= w.e 2

i=l

r= (Yyiy)2 + (z~zi)2 (2.25)

where r is the radial distance from the center of each vortex with

coordinates yi and zi. For the injection pattern shown in Figure

2.1, there are three vortices located in the unit computational

cell. The vortex locations are shown in Figure 2.3.

The strength of each vortex (r) is defined by:

_ i r 2

r i = 0Oe-i rdr = nw i/i (2.26)

0

The diffusion constant P is defined in terms of the vortex core

size by Equation 2.6 of Reference 4 and is reproduced here as:

13
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Figure 2.3. Initial vortex geometry.
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2 (227

where the /3 of this report is P12 of Fearn and Weston.

The vortex core size is obtained from Figure 9 of Reference 4 and

is curve fit as:

- =  0.11 S + 0.60 (2.28)

D D

where S is distance measured along the vortex curve from the

injection location to x = o. The distance S is defined in Equation

2.33.

The vorticity at the center, w,, is obtained from Equation 2.26 for

a given value of the vortex strength F,. The data of Fearn and

Weston (Table 2 of Ref. 4) for the initial vortex strength near the

jet orifice is plotted in Figure 2.4 for normal injection into a

subsonic flow. Also shown is the maximum computed vorticity from

the analytical model of Karagozian (Ref. 5). The data are

represented by:

r = 1.4 DV®R

R (PJVJ/PVc (2.29)

where D is the jet orifice diameter, subscript J denotes jet

orifice values and subscript - denotes free stream values (i.e.,

station 0 in Fig. 2.2). Note that wi and r, are defined to be

positive for clockwise rotation and negative for counterclockwise

rotation.

15
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Figure 2.4. Initial vortex strength for normal injection into
subsonic flow.
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The location of each vortex center is estimated from the jet

centerline and vortex center trajectory data of Fearn and Weston

(Ref. 4). The general form of the trajectory equation is given by

the following expression where the a, b, and c coefficients are

different for the jet centerline and vortex center.

h/D = aRb (x/D)C (2.30)

where h is distance from the wall to either the jet centerline or

the vortex center. The coefficients are given for the jet

centerline as: a = 0.9772, b = 0.9113, c = 0.3346 and for the

vortex center as: a = 0.3473, b = 1.127 and c = 0.4291.

The angle of inclination (0) of the jet centerline to the wall is

obtained from the slope of Equation 2.30. At x = o, the largest

angle is 02 (for jet 2, see Fig. 2.2). Thus, for a specified value

of 02, the corresponding x2 distance is given by:

x2 = D2 (0.327R0"911/TanO2) 1.5 (2.31)

The xI location is given by:

xI = x2 + L (2.32)

For a given value of 02 (typically 20 deg), Equations 2.31 and 2.32

define x1/D1 and x2/D2 and Equation 2.30 gives the values of h, and

h2 for the vortex center and the jet centerline location at x = o.

The distance along the vortex center curve is given by:

x dh\2 ] 1/2

S 1 + T- dx

0

dh = 0.149R 1 .127 /(x/D) 0 . 5 7 1  
(2.33)

where xi defines S1 and x2 defines S2.

17



The vortex half-spacing (dl, d2, d3) of Figure 2.3 is obtained from

Figure 7 of Reference 4 and is given in Figure 2.5. The x

locations for the data of Figure 2.5 were determined for 02 = 20

deg.

The actual jet shape is that of a horseshoe with the jet centerline

at the closed end and the vortices located in the legs at the open

end. Although there is no intrinsic difficulty in using a fine

mesh to resolve the horseshoe geometry, the coding to define the

mesh becomes quite complicated and the computational cost is

increased significantly. Therefore, the jet geometry has been

approximated by an elliptical cross section with the vortex located

on the major axis of the ellipse. The actual jet geometry used in

the calculation is shown in Figure 2.6 where the elliptical cross

section has been truncated into a rectangle to simplify the mesh

generation. The unit computational cell in Figure 2.6 corresponds

to that shown in Figures 2.1 and 2.2 and contains one-half of a

large jet (JET1) and two halves of the small jet (JET2). The jet

areas are defined in Appendix B and the location is defined by

Equations 2.30 through 2.32. To close the geometry, the ratio of

jet major to minor axis (E) must be specified. Experimental data

suggest values of E in the range of one to five. However, there

are additional constraints on E dictated by the hole spacing and

the vortex locations. That is, the extent of the jets in the z

direction must be large enough to incorporate the vortices inside

the jet and small enough such that the two half-jets do not touch.

With these constraints, a value of E = 2.0 seems to be a reasonable

choice and this value has been used for all the calculations of

this report.

The experimental information given above should provide a

reasonable estimate for the initial jet vorticity. However, since

the experimental data are for a single pressure matched jet

exhausting into an unbounded flow, it is important to emphasize

that this is only an estimate. In particular, the symmetry

conditions imposed by the injection hole spacing and locations are

not present in the experimental data base.

18



2.0

D

1.0

O FEARN &WESTON
X/D DEFINED BY 0= 200

X= 0.851 R1 .3665

D

0.0 I I I I I

0 2.0 4.0 6.0 8.0 10.0

JJ0 0 0 0

Figure 2.5. Vortex half spacing.
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SECTION 3

NUMERICAL ANALYSIS

The equations of Section 2 are defined in terms of the physical

coordinates x, y, and z. The actual calculations are carried out

in the transformed q and c coordinate system. The transformed

coordinates are defined by:

q S y/H(x) Z/A (x) (3.1)

where a nonuniform cartesian mesh is used in the r- coordinate

system.

The equations are differenced using a first-order accurate two-

point backward difference for the x derivatives and second-order

accurate three-point central difference for the r and

differences.

After differencing, all the linearized equations have the following

form:

AUj+, k + BUj, k + CUjI, k + DUj,k+ 1 + EUj,k_1 + w = F (3.2)

where the coefficients A, B, C, D, E and F are all known functions

of j and k. The index j is in the q direction and the k index is

in the direction. The term with 6' denotes the pressure gradient

in the axial momentum equation (Eq. 2.5) and is not present for the

other equations. Therefore, w = -1.0 for the momentum equation and

w = o for all the other equations. The variable U is solved for

using an implicit formulation where the block tridiagonal approach

is used to solve the linear system of equations. An iterative

approach is used where the coefficient arrays are updated after

each iteration and Equation 3.2 is solved repeatedly until some

error criterion is satisfied. Then a new step is taken in the x

direction and the process is repeated.
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When the momentum equation is solved, the pressure gradient 9 is

solved simultaneously with the axial velocity by satisfying

Equation 2.6 in the form:

0 0

S/(HA) (3.3)

where 0 is a given function and U denotes the axial velocity. For

incompressible or low-speed flow where the density varies slowly

with pressure, 0 is the density p evaluated at the previous iterate

level. For supersonic flow, where the density varies strongly with

pressure, Equation 2.6 is written as:

1 1

P k j U d)7d
0 0

0 S R/RT (3.4)

where T is the temperature and M is the mixture molecular weight.

The pressure P is related to the pressure gradient 0 through the

use of a backward difference:

9 = (P - PL)/dx (3.5)

where PL is the pressure at the previous x station.

Thus, for incompressible or subsonic flow, Equations 3.2 and 3.3

are solved simultaneously for U and P. For supersonic flow,

Equations 3.2, 3.4 and 3.5 are solved simultaneously for U, a' and
P.

The solution procedure is to use some quadrature to express the

integral of Equation 3.3 or 3.4 as a linear sum which can be solved

within the framework of the block tridiagonal approach. This

approach was used by Crowell (Ref. 1) and Truman (Ref. 6) for 2-D
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flows. The extension to 3-D flows is straightforward but tedious

and the details are omitted here. The difference between the

solution using the subsonic or supersonic formulations is that the

supersonic formulation results in a quadratic for the pressure,

whereas the subsonic or constant density formulation yields only a

single solution branch. The two solution branches obtained from

the use of Equation 3.4 are both physically valid and represent

subsonic and supersonic solutions. For supersonic flow, the lower

pressure is always used. For low subsonic flows, the higher

pressure is always used. However, for subsonic flow near Mach 1,

the correct pressure can be on either solution branch and some care

is required in choosing the correct value.

The solution procedure for Equation 3.2 using the block tridiagonal

approach marches in the j direction from J = 1 to J = JMAX and

solves a full matrix for the KMAX values of the recursion

coefficients at each J value. The solution for U is obtained by

iack substitution from J = JMAX to J = 1. The computational effort
3is proportional to JMAX(KMAX) . Therefore, it is extremely

important to choose the J direction as the direction with the

largest number of mesh points. For the case shown in Figures 2.1

through 2.3, the H dimension is nearly four times the A dimension

and there are about three times as many mesh points in the y

direction as in the z direction. Therefore, it is critical that

the J dimension be in the y direction. Choosing the J dimension in

the z direction would increase computational cost by a factor of 9.
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SECTION 4

RESULTS AND DISCUSSION

The case of most interest to WL/ARDI is the modeling of the flow in

the RotoCOIL device where the iodine injection takes place in a

subsonic channel and the flow is expanded through a throat to

achieve supersonic cavity flow. In principle, the TRIMIX code can

model this flow geometry by iterating upon the upstream pressure

until sonic flow in the throat is achieved. However, this

constitutes a classical problem in fluid dynamics where a saddle

point singularity exists at Mach 1 and can only be integrated with

great difficulty, using a marching technique. The practical

difficulty is that the solution must be extremely accurate to

integrate smoothly through the throat. This translates into a

requirement that the initial pressure must be iterated until it is

known to within a tolerance of 0.01 torr. Typically, this would

take 10 or 12 iterations, each one of which would consume 3 to 4 h

of computer (CRAY 1) time. Although the solution obtained in this

manner is exact, it is computationally expensive. One way around

this problem is to specify the pressure distribution and accept the

associated error in the global mass flux. That is, if P is

specified in the momentum equation, then there is no way to ensure

that Equation 2.6 is satisfied. That is, an error in pressure will

result in an error in the global mass flux. Therefore, to limit

the mass flux error to some acceptable level, a reasonably accurate

pressure distribution must be supplied to the calculation. Since

the pressure is determined primarily by the area schedule and the

loss in momentum due to wall shear, it seems plausible to assume

that a one-dimensional (l-D) premixed calculation could be used to

obtain the pressure distribution. The 1-D premixed calculation

must also iterate on the initial pressure to achieve sonic flow at

the throat but the computational cost of this calculation is less

than a half-hour of CRAY 1 time. This approach has been used with

the 2-D JETMIX code for mixing calculations and has worked quite

well, with the error in mass flux oscillating between 5 and 10

percent over all the streamwise locations. Since the mass flux
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error is distributed over all the species, it is believed that the

error in the species mass fractions is less than the error in the

global mass flux. This approach should also work for the 3-D

mixing problem and therefore the TRIMIX code contains an option to

either calculate the pressure by satisfying global continuity or

specify the pressure.

Since it is believed that most of the mixing and 12 dissociation

takes place in the subsonic flow upstream of the throat, the

calculations will concentrate on this region. To avoid the

pressure iteration described above, the throat is removed and the

calculations are done for a constant area channel where the initial

conditions are those of the RotoCOIL nominal operating point. The

conditions upstream of the iodine injection and the geometry are

given as:

P 34.71 torr

T - 275 K

Y - 0.37

U - 0.93

P(H 20) = 0.897 torr

R(He) = 4.54 moles/s

x(02) = 1.385

x(C1 2) = 0.107

x(H 20) 0.16

fn 0.023186 g/s

H = 0.37338 cm

A 0.09726 cm (4.1)

Note that the molar flow rates are those for the entire nozzle bank

whereas the mass flux (i) is for the unit computational cell

defined by H and A. The 12/02 molar flow ratio is 0.01487 and the

injected molar ratio of He/I2 is 43.835. It is assumed that the
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injected flow is choked at the orifice hole to give a value of the

square root of the momentum ratio of R - 2.763. The injected 12

and He has a total temperature of 366 K. The corresponding

information from Section 2.3 is given as:

r/DV. 3.87

71= 0.3865

72  - 0.747

PI 0.2612
2= 0.5223 (4.2)

where the I coordinates are the jet centerline locations for the

indicated jets and the 4p coordinates are the vortex center

locations (see Figs. 2.3 and 2.6). The initial jet and vortex

locations are shown in the transformed plane in Figure 2.6. For

all the calculations of this report, 10 species (12, He, I, 12", I

H20, 02(1A), O2(1I), 02 (3 ), C12) and the 21 reactions of the reduced

WL oxygen/iodine kinetics package (Table 2.1-VI of Ref. 7) were

used.

The calculations used 48 mesh points in the q direction and 16 mesh

points in the 4 direction. The step size in the x direction

started at 0.01 cm and was ramped up to 0.03 cm. The calculation

was run out to 1.8 cm and a total of 66 steps were taken in the x

direction. The computation time was 3.89 h on the CRAY 1 machine.

The initial distribution for the axial vorticity and the velocity

components are contained in Figure 4.1. Note that the vorticity is

large enough to induce secondary flow velocities of the same

magnitude as the axial velocity. The convection and diffusion of

the iodine jet can be seen in Figure 4.2 with increasing distance

from the initial x location. The buildup of the gain is shown in

Figure 4.3. The profiles at the x = 1.8 cm station are contained

in Figure 4.4.
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Figure 4.1. Initial distributions at x = 0.
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Figure 4.1. Initial distributions at x o (continued).
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Figure 4.2. 12 concentration versus flow distance.
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Figure 4.3. Gain distribution versus flow distance.
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Figure 4.4. Distributions at x = 1.809 cm.
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Figure 4.4. Distributions at x =1.809 cm (continued).
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4.1 COMPARISON OF 3-D MIXING AND 1-D PREMIXED CALCULATIONS.

The premixed assumption is frequently used to carry out performance

calculations for COIL laser devices (see Ref. 8 for example). In

this manner, the mixing calculation is eliminated by assuming

instantaneous mixing between the primary and secondary flows. This

reduces the 3-D chemically reacting flow problem to a 1-D problem

with a corresponding reduction in computer cost by a factor of 100.

The TRIMIX code contains an option to premix the reactants at the

initial station and carry out the premixed calculation to provide

a comparison between the premixed assumption and the exact 3-D

results. To compare the results, average values are defined for

the gain and species as follows:

1 1
HA

Ki - PUK " d7d

0 0

1 1

a J { ad

0 0

F E1 1 2/ K (4.3)

where K, and a are the species mass fractions and gain and F is the

fraction of molecular iodine which has been dissociated. The bar

superscript denotes values which are averaged over the entire

computational domain at each x station. The average gain in the

direction of the optical axis (y-direction) determines the

radiative flux and is defined by:

1
a (4)pt fI a(4,q) d (4.4)

0

where the gain calculation is described in Appendix C.
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The comparison is contained in Figures 4.5 and 4.6. Figure 4.5

shows the fraction of 12 dissociated (F of Eq. 4.3) and the average

gain (a) as a function of flow distance and Figure 2.12 shows the

optical axis gain (Eq. 4.3). The premixed assumption drastically

underpredicts both the amount of iodine dissociation and the small

signal gain. To the author's knowledge, this is the first

comparison of the premixed assumption with an exact 3-D mixing

calculation for an oxygen/iodine laser.

The opinion is often expressed that while the premixed calculation

is not exact, it does provide the upper bound (i.e., most

optimistic) laser performance. The results of Figures 4.5 and 4.6

clearly dispute this assertion. In this case, the premixed

assumption substantially underpredicts the performance. This

difficulty with the premixed assumption has been realized for some

time (see the discussion on pages 25-28 of Ref. 8). The approach

used in Reference 8 to overcome this limitation was to artificially

increase the rate constant for the 12 formation reaction. That is,

the first step in the 12 dissociation chain is the following

reaction.

K *

2 + 02 ( 1A) 2 + 3

K = 7.OxlO- 15 cm 3/molecule-s (4.5)

where the indicated rate is the "standard" value from Reference 7.

Both the 3-D mixing calculation and the premixed calculations of

Figures 4.5 and 4.6 used the rate constant of Equation 4.5.

If the 12 dissociation fraction is known at some x location, then

the rate constant of Equation 4.5 can be chosen to reproduce the

known dissociation. From the 3-D calculation, the dissociation

fraction is seen to be about 44 percent at x = 1.83 cm. By

increasing the rate constant of Equation 4.5 by a factor of 5, the

premixed calculation will yield the same result at x = 1.83 cm.
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Figure 4.5. Comparison of 3-D mixing and 1-D premixed
calculations for 12 dissociation and average gain.

36



X =1.8 cm

0.008

E 0.0063 
D MIXING

C

00.004

0.002

PREMIXED

0.000 -1 1

0.0 0.20 0.40 0.60 0.80 1.0

Figure 4.6. Comparison of 3-D mixing and l-D premixed
calculations for optical axis gain.
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This is shown in Figure 4.7. The corresponding small signal gain

and yield are compared with the average values from the 3-D

calculation in Figure 4.8, and the agreement is quite good. In

other words, if the rate constant of Equation 4.5 is increased to

reproduce the known level of 12 dissociation, then the premixed

calculation will give the correct average gain and yield. The

comparison of Figures 4.7 and 4.8 seems to provide the

justification for the use of the premixed approximation with the

approach of Reference 8.

4.2 COMPARISON OF DIFFUSION MODELS.

The binary diffusion model (Eq. 2.13) is frequently used in mixing

calculations because of its simplicity. One of the objectives of

this report was to make a comparison between the binary diffusion

and "effective" binary diffusion (Eq. 2.11) models. This

comparison is contained in Figures 4.9 and 4.10. In Figure 4.9,

the iodine dissociation and optical axis gain are given for the two

models where a Schmidt number of unity has been used in the binary

diffusion model. These are significant differences between the two

models, particularly with respect to the iodine dissociation

fraction. The gains profiles at x = 1.8 cm are contained in Figure

4.10, which shows that the profile for the binary diffusion model

is much smoother than the result for the "effective" binary

diffusion model.

Although the differences between the two models are not as great as

those reported in Reference 1, they are still sufficiently large to

preclude the use of the binary diffusion model. There undoubtedly

exists some value of the Schmidt number which would result in

closer agreement between the two models. The difficulty is that

the "correct" value is not known a priori. The use of the

effective binary diffusion model imposed only a 5 percent

computational penalty for the calculations of Figures 4.9 and 4.10.
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Figure 4.7. Influence of 12* formation rate on iodine dissociation.

~39



0.40
3D MXN

-J0.35

0 PREMIXED 1

0.3 K . 0

0.005

1A k. U

0.004 -2+ 02 -412+ 02

E

0.003 -PREMIXED

0.002

0.001 3D MIXING 1K - 7.0 X10

0.0 0.5 1.0 1.5 2.0

Figure 4.8. Influence of 12 formnation rate on gain and yield.

40



OPTICAL AXIS GAIN
x = 1.8 cm

0.008 EFFECTIVE BINARY

E 0006DIFFUSION

E 0.006-

(0 0.004

0.002 'BINARY DIFFUSION
, Sc -1.0

0.00 1 1 1

0.0 0.20 0.40 0.60 0.80 0.10

F/DV = 3.87 12 DISSOCIATION
00

0.50

z
O 0.40 -
I-

EFFECTIVE BINARY
U. DIFFUSION
z
o 0.30

0 BINARY DIFFUSION
CD 0 Sc = 1.0(n 0.20 -

0.10 -

0.00
0.80 1.0 1.2 1.4 1.6 1.8

X - cm

Figure 4.9. Influence of diffusion model on gain and iodine
dissociation.

41



EFFECTIVE BINARY DIFFUSION

0.j

'0

BINARY DIFFUSION Sc = 1.0

0'

Figure 4.10. Influence of diffusion model on gain (x = 1.80 cm).

42



Since the computational penalty is small and there is no ambiguity

associated with choosing a value of the Schmidt number, it is

recommended that the "effective" binary diffusion model be used in

3-D mixing calculations.

4.3 SENSITIVITY OF RESULTS TO UNCERTAINTIES IN INITIAL CONDITIONS.

As indicated in Section 2.2, the experimental data base upon which

the initial conditions are based is for a single jet issuing into

an unbounded flow. Since the flow geometry for the present problem

consists of multiple jets being injected into a finite flow, the

initial conditions of Section 2.3 should be viewed as a reasonable

approximation rather than as an exact description of the flow at x

= o. In order to assess the impact of uncertainties in the initial

conditions upon the computed results, the parameters of Section 2.3

are varied over a plausible range and the calculations are compared

with the nominal case.

The P coefficients of Equation 2.25 determine the peak value and

the spread of the vorticity. As P increases, for a fixed value of

the vortex strength F, the peak vorticity increases and the

vorticity is more concentrated about the vortex center. The P
coefficients are defined in terms of the vortex core size in

Equations 2.27 and 2.28. If the vortex core radius was actually

half the value given by Equation 2.28, the P coefficients would be
four times as large as the nominal values and the peak vorticity

would also be increased by a factor of 4. The computed results for

this case are denoted by the circle symbols in Figure 4.11. It is

seen that this large variation in P has only a minor impact on the

gain and 12 dissociation.

There is also some uncertainty in the vortex half-spacing (the d

coefficients of Fig. 2.3) given by Figure 2.5. The nominal values

(given by pl and 4 of Eq. 4.2) are reduced to move the vortex

locations closer to the center of the jet. The nominal vortex

centers are shown in Figure 2.6. Moving the vortex center to the
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midpoints of the jets gives 4Pl = 0.15625 and 2 = 0.3125. The

calculated results for this variation are denoted by the triangle

symbols in Figure 4.11. The influence on the results is s3en to be

negligible.

The variation on the vortex strength is contained in Figure 4.12

where the nominal value (F/DV. = 3.87) has been approximately

doubled and halved. The influence on the gain is fairly small as

is the influence on 12 dissociation for the lower value. The

effect on 12 dissociation is larger for F/DV. = 8.0 (about 33

percent at x = 1.8 cm). Even so, this is a relatively small

variation considering the magnitude of the variation in the vortex

strength.

Of all the experimental jet data, the jet trajectory information is

the most accurate. If the predicted jet penetration is close to

the nozzle centerline (7 = o), the symmetry condition at that

location would probably influence the jet trajectory. However, for

the conditions used here (Equation 4.1) the jet closest to the

centerline (JET1) is still well away from it. Therefore, it is

believed that the values used for the initial jet locations

(Equation 2.30) are probably accurate. However, to see what impact

the symmetry boundary condition at q = o would have, a case was run

where the jet centerlines were moved towards 1 = o such that the

large jet (JET1) was just touching the 7 = o boundary (1 = 0.0814

and U2 = 0.44153). The results indicated negligible influence on

the 12 dissociation but the gain was strongly affected with the

average gain being reduced from 0.0043/cm to 0.0026/cm at x = 1.8

cm. It is apparent, therefore, that for extreme variations in jet

location, the calculated results will be strongly influenced.

It is believed that the results of this section demonstrate that

the computed results are only moderately influenced by relatively

large variations in the initial vorticity field. Large variations

in jet location can influence the results, but there is little

uncertainty in the jet location.
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Figure 4.11. Influence of initial conditions on gain and iodine
dissociation.
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4.4 ZERO VORTICITY RESULTS.

Figure 4.12 showed that reducing the nominal vorticity by a factor

of 2 had only a small influence on the computed results. The

obvious question is, What would be the impact of zeroing the

vorticity? I-. Lne results are only slightly affected when the

initial vorticity is zeroed, it would suggest that the transverse

velocity components could be ignored and the problem treated as a

3-D diffusion problem with a single convective velocity component

(the axial velocity). The comparison with the initial vorticity

zeroed is contained in Figure 4.13, which shows that the gain is

strongly affected by zeroing the vorticity. It is concluded that

the flow problem cannot be simplified by using a zero vorticity

approximation.
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SECTION 5

SUMMARY AND CONCLUSIONS

A 3-D fluid dynamic computer code (TRIMIX) has been written to

analyze the mixing between a primary flow and a secondary flow

injected as a series of discrete jets from the walls which bound

the flow. The flow problem has been parabolized by starting the

calculation just downstream of the jet injection location where the

jets have been turned parallel to the primary flow. The initial

conditions at this location have been defined by assuming that the

primary and secondary flows are pressure matched and unmixed. The

equations are solved using a vorticity-stream function formulation

and the initial distribution of axial vorticity is obtained from

the experimental data base on jet injection.

A number of calculations have been carried out in a constant area

flow channel which has been chosen to represent the subsonic

portion of a RotoCOIL laser nozzle. The oxygen/iodine set of

species and reactions consisting of 10 species and 21 reactions has

been used for the calculation. The equations were solved over a

rectangular grid containing 768 mesh pcints, and the required

computation time on the CRAY 1 computer was about 2 h/cm of

distance in the flow direction.

The calculations indicate that moderate uncertainties in the

initial conditions have only a minor influence on the computed

results. This finding provides the justification for the approach

used in the TRIMIX code; namely, that the initial conditions can be

specified accurately enough for meaningful results to be obtained

from the calculation.

It has been demonstrated that the choice of diffusion model can

have a significant influence on the results even for flows with

large axial vorticity. This is in agreement with an identical

comparison for 2-D mixing calculations with zero vorticity. It is
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concluded that the use of the binary diffusion model should be

abandoned in chemical laser mixing calculations.

Comparisons with the premixed model indicate that the use of the

premixed assumption will significantly underpredict the amount of

iodine dissociation and small signal gain. This result should put

to rest the misconception that the premixed assumption always

predicts the most optimistic laser performance. However, it has

been shown that the use of the premixed model with the use of an

artificially increased 12 dissociation rate constant will give the

correct average values for yield and gain. This result provides

some justification for the use of the premixed model in situations

where the degree of 12 dissociation is known from experiments.

It is believed that the TRIMIX code provides a rational model for

analyzing the performance of oxygen/iodine lasers at a reasonable

computational cost. It includes the 3-D aspects (geometry and

axial vorticity) which are ignored in 2-D codes and it is at least

one and possibly two orders of magnitude faster than an exact

Navier-Stokes code. However, the code does contain approximations

in the definition of the starting conditions and it should be

compared uith both experimental data and a Navier-Stokes solution.

Future effort should concentrate on adding the capability to solve

the species equations simultaneously, addition of a resonator model

for power extraction, and code validation efforts.
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APPENDIX A

VORTICITY TRANSPORT EQUATION FOR A COMPRESSIBLE,

VARIABLE VISCOSITY FLUID

The vorticity transport equation for an incompressible, constant

viscosity fluid has a particularly simple form and may be found in

many books. The corresponding result for nonconstant viscosity and

a compressible fluid is difficult to locate and is presented in

this appendix.

The vorticity and velocity are defined by:

W VxV = Wx ex +w ey +w zez (A.1)

V = ue x + Vey + we z

The momentum equation for steady flow may be written as:

pV ( V2) -pVxW = - Vp + V(PVV) (A.2)

By taking the curl of Equation A.2 and combining with the

continuity equation, the vorticity transport equation is obtained

as:

(pV-V)W - (W.V)pv + VpxV ( V2 )

(A.3)

= V(PVW) - (VP'V)w + Vx[ (VJ'V)V] + VPxV 2V

Equation A.3 is a vector relationship which provides the transport

equations for the scalar components wx, Wy and wz. Note that for

constant density and viscosity, the gradients of p and p vanish and

the usual equation is recovered.
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Since only the axial vorticity (wx) is solved for in the TRIMIX

code, we express Equation A.3 for the scalar component wx as

follows:

For notational convenience, we define:

a B x component of: VpxV (V2/2) (A.4)

ft ax component of: VyxV 2V + Vx[(Vp*V)V] - (Vp.V)W

The scalar equation for wx is obtained as:

PVVWx + a = v - (lVc) + W-Vpu + ~3(A.5)

Equation A.5 is parabolized by dropping the x derivatives in the

expression for P and the x derivative in the divergence of pVwx.

The form of Equation A.5 which is solved for wx is given by:

pV*VW =V.( Vw~ +W -(Pu) + a (A.6)

0w ! j(Pu) +W - (Pu) +f3a

The vorticity components in the y and z direction in the expression

for 0 are calculated from the definitions of Equation (A.l). That

is:

(9u aw O a(v auWy= v -5u (A.7)
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APPENDIX B

INITIAL CONDITIONS

In this appendix, the global conservation equations for mass,

momentum and energy are used in conjunction with some closure

assumptions to determine the initial flow conditions at station D

(see Figure 2.2).

The axial momentum equation at station D may be written as:

(PAD= (PmA)p + (PmA)1 + (PmA)2 B1
(PJD p 1 2

Pm = P + Pu 2

where subscript p refers to the primary flow and subscript 1 and 2

refer to the injected jets.

The flow area at station D must be conserved such that:

A = Ap + A1 + A2  (B.2)

Assuming normal injection, such that the jets add nothing to the

axial momentum, and ignorirg wall friction, the momentum at station

0 and D is equal. That iL,

(ProA) = (PmA) (B.3)

Ignoring heat transfer between the primary flow and the injected

jets, the total temperatures at station D are known. The energy

equation for the jets and the primary are given by:

Top = T p (1 + (yp-l)Mp2/2)
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Tos= T 1  + (Ys -1)M 1 2/2 (B.4)

T T2  + (y5-l)M2 2/2)

where TO is the primary flow total temperature at station 0, and

Tos is the plenum temperature for the jets. Subscript s refers to

the secondary flow (i.e., the jets).

Since there is assumed to be no mixing between the injection

locations and station D, the mass flows are given by:

mp = (pUA)
p

;l = (pUA)1 (B.5)

m2 = (pUA) 2

Since both jets are fed from a common plenum, the jet mass flows

are related by the ratio of the injection hole areas. That is,

;l = ;n2 (A 1 /A 2 ) inj (B.6)

With the assumption that the flows are pressure equilibrated at

station D, the pressures are given by:

Pp = Pl = P2 = p (B.7)

To close the system of equations, a value for the ratio of the jet

areas at station D must be assumed. The obvious choice is to use

the same ratio as the hole pattern. This gives:

A/A2 (A1/A 2) inj(B.8)
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The given information consists of (PmA)o, Top, Tos, mp, M1 , M2,

(A1/A2) in and the area A at station D. For given values of A1/A 2 and

the pressure P, all the flow values and the areas occupied by the

jets and primary may be calculated at station D. As indicated,

Equation (B.8) is used for the jet area ratio. The pressure P is

obtained by assuming that it is the same value as the premixed

pressure. The premixed pressure is easily calculated by assuming

instantaneous mixing of the jets and primary without chemical

reactions. The premixed conservation equations for mass, momentum

and energy are easily derived and are not repeated here.

To solve the system of equations, an iterative solution is required

where the Mach number MI is the iteration parameter. Note that the

choice for the jet area ratio (Eq. B.8) dictates that M2 = M1 and

therefore the properties (temperature, velocity and density) of

both jets are identical.

To summarize: With the assumption of negligible mixing and heat

transfer and rapid pressure equilibration between the jets and the

primary, the global conservation equations may be solved to obtain

the initial condition for the 3-D parabolic mixing calculation. It

is believed that these approximations and the closure assumptions

of premixed pressure and Equation (B.8) for the jet area ratio are

reasonable. To assess the accuracy of these approximations would

require generating some exact 3-D solutions of the Navier-Stokes

equations for comparison purposes.
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APPENDIX C

GAIN MODEL

The gain is dependent upo, the density, temperature and I and I*

concentrations and is obtained from Equation C.20 and C.17 of

Reference C.1.

a = A2A21G [N2 - g2N,/gl]/8r (C.1)

where A is the wavelength and A21 is the Einstein coefficient for

spontaneous emission. The line shape function, G, is obtained from

the Voight function and includes both the effects of Doppler and

pressure broadening. Pressure broadening was included in the gain

calculation through the use of experimental pressure broadening

coefficients obtained from the literature.

Schlie (Ref. C.2) reports that the laser should operate on the 3-4

hyperfine transition and this is assumed to be the case here. For

this transition, the number densities of the upper and lower states

are related to the total number density of I and I* by the

following (Ref. C.2):

N, = 9NI/24

(C.2)

N2 = 7N,./12

where the number density of any species is related to its mass

fraction by:

N = NA pKi/M i  (C.3)

where NA is Avogadro's number and M, is the molecular weight of

species i.

The degeneracy ratio and the Einstein coefficient are (Ref. C.2):

2 = 7g,/9 A21 = 5.0 s1 (C.4)
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The Voight (Ref. C.3) line shape function is given by:

G = 2 n2 [1 - erf(y)] EXP(y2)
AVD /Y

(C.5)

y = A L 1n2/AvD

where AvL and AvD are the Lorentz and Doppler full-width, half

maximum line shape. The Doppler width is given by:

AvD = 2(2RTln2/M) 1/2/A (C.6)

For pressure broadening, the line width (Eq. 4.8 of Ref. C.1) is

proportional to the collision frequency (the inverse of the

average time between collisions). Using the expression of

Reference C.4 (page 1023) for the collision frequency, the Lorentz

line width may be expressed as:

1/2

AVL r) (T 1 aiPi

(C.7)
2 NAQai 21T 1 1 1 /2

flm - -- (- + -)
r2  RTr  Ma  Mi

where Tr is any reference temperature, NA is Avogadro's number, and

Ma and M, are the molecular weights of species a and i. Qai is the

optical cross section, and Pi is the partial pressure of species i.

Generally, an expression for the optical cross section Qai is not

available, and the Lorentz width is evaluated from measured

pressure-broadening coefficients. The literature values (denoted

by aai) are usually presented in a manner which implies no

temperature dependence on AVL. That is,

AVL = O aiPi (C.8)
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The P., coefficients are related to the measured literature

values of a, by:

n

flai =" Oai TM n (C.9)

where Tm is the measured gas temperature at which aa was

determined.

If the optical cross section is independent of temperature, then n

= 0.50 from Equation C.7. On page 1025 of Reference C.4 it is

stated that Qi is inversely proportional to the square root of

temperature. If so, then it follows that n = 1.0. If the measured

aai are available at room temperature, then by choosing the

reference temperature equal to room temperature (i.e., Tr = 295 K)

we have Pai = aai" This is the approach used in the code: the Pai

are taken to be the measured room temperature values and Equation

C.7 is used to calculate the Lorentz width.
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